Name: Date: Period:

Higher Order Polynomial

- 1. Pg 348-349 #33, 37; 41-83 column and Pg 370 #35-44 column
- 2. Pg 348-349 #34, 38; 42-84 column and Pg 370 #36-45 column
- 3. Pg 356-357 #15-51 e.o.o. and Pg 369 #15-16
- 4. Pg 356-357 #16-52 e.o.e. and Pg 369 #17-18
- 5. Pg 362-363 #15-16; 23-24; 33-34; 47-48 and Pg 369 #21-22
- 6. Pg 362-363 #17-18; 25-26; 35-36; 49-50 and Pg 369 #23-24
- 7. Pg 362-363 #19-20; 27-28; 37-38; 51-52 and Pg 369 #25-26
- 8. Pg 333-334 #15-17; 27-28; 37-38; 49-50; 53-55; 65-67 and Pg 376-377 #13-14; 23-25 (use graph paper)
- 9. Pg 333-334 #18-20; 29-30; 39-40; 51-52; 56-58; 68-70 and Pg 376-377 #15-16; 26-28(use graph paper)
- 10. Worksheet
- 11. Worksheet
- 12. Worksheet
- 13. Chapter Review

A polynomial function is a function of the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Where $a_n \neq 0$, the exponents are all whole numbers and the coefficients are all real numbers.

The Fundamental Theorem of Algebra

If f(x) is a polynomial of degree n where n > 0, then the equation f(x) = 0 has at least one root in the set of complex numbers.

In general, when all real and imaginary solutions are counted (with all repeated solutions counted individually), an nth-degree polynomial equation has exactly n solutions.

Directions: Using the Fundamental Theorem of Algebra, state the number of solutions (real and imaginary) and solve by factoring to find the solutions.

E1. Solve:
$$2x^5 + 24x = 14x^3$$

P1. Solve:
$$2y^5 - 18y = 0$$

E2. Solve:
$$x^4 - 8x^2 - 9 = 0$$

P2.
$$x^4 + 9x^2 = 0$$

E3. Write a polynomial function f of least degree that has real coefficients, a leading coefficient of 1, and 2 and 1 + i as zeros.

P3. Write a polynomial function f of least degree that has real coefficients, a leading coefficient of 1, and 1, and -2 + i, and -2 - i as zeros.

Divide $2x^4 + 3x^3 + 5x - 1$ by $x^2 - 2x + 2$

P1. Long Division

Divide
$$y^4 + 2y^2 - y + 5 by y^2 - y + 1$$

E2. Synthetic Division

Divide $x^3 + 2x^2 - 6x - 9 \ by \ x - 2$

P2. Synthetic Division

Divide
$$x^3 - x^2 - 2x + 8 by x + 2$$

Remainder Theorem

If a polynomial f(x) is divided by x - k, then the remainder is r = f(k)

E3. Use the remainder theorem to check your answer to example 2.

If $f(x) = x^3 + 2x^2 - 6x - 9$, find f(2)

P3. Use the remainder theorem to check your answer to practice 2.

If
$$f(x) = x^3 - x^2 - 2x + 8$$
, find $f(-2)$

Factor Theorem

A polynomial f(x) has a factor x - k if and only if f(k) = 0.

E4. Use the factor theorem to determine If the polynomial is a factor

Is
$$x + 3$$
 a factor of $x^3 + 2x^2 - 6x - 9$
Or
Does $f(-3) = 0$ if $f(x) = x^3 + 2x^2 - 6x - 9$

P4. Use the factor theorem to determine if the polynomial is a factor

Is
$$x + 2$$
 a factor of $x^3 - x^2 - 2x + 8$
Or
Does $f(-2) = 0$ if $f(x) = x^3 - x^2 - 2x + 8$

E5. Factor $f(x) = 2x^3 + 11x^2 + 18x + 9$ given that f(-3) = 0.

P5. Factor $f(x) = 3x^3 + 13x^2 + 2x - 8$ given that f(-4) = 0.

E6. One zero of $f(x) = x^3 - 2x^2 - 9x + 18$ is x = 2. Find the other zeros of the function.

P6. One zero of $f(x) = x^3 + 6x^2 + 3x - 10$ is x = -5. Find the other zeros of the function.

The Rational Zero Theorem

If $f(x) = a_n x^n + \dots + a_1 x + a_0$ has integer coefficients, then every rational zero of f has the following form:

$$\frac{p}{q} = \frac{factor\ of\ constant\ term}{factor\ of\ leading\ coefficient}$$

- E1. Use the Fundamental Theorem of Algebra to state the number of solutions and find the rational zeros of: $f(x) = x^3 + 2x^2 11x 12$.
- P1. Use the Fundamental Theorem of Algebra to state the number of solutions and find the rational zeros of: $f(x) = x^3 4x^2 11x + 30$.
- E2. Use the Fundamental Theorem of Algebra to state the number of solutions and find the rational zeros of:

a.
$$x^3 + 3x^2 + 16x + 48 = 0$$

b.
$$f(x) = x^4 + 6x^3 + 12x^2 + 8x$$

P2.Use the Fundamental Theorem of Algebra to state the number of solutions and find the rational zeros of:

a.
$$x^2 - 14x + 49 = 0$$

b.
$$x^4 + 3x^3 - 8x^2 - 22x - 24 = 0$$

E2	Find all the zeros of	f (a) —	~ 5	2 2 4	1 0 2 2	1	124 1	6
£3.	Find all the zeros of	T (X) =	x° –	$\Delta \chi^{\perp}$	$+8x^2$	—]	1 <i>3x</i> +	0

P3. Find all the zeros of
$$f(x) = x^3 + x^2 - x + 15$$

E4. Use the Fundamental Theorem of Algebra to state the number of solutions and find the rational zeros of: $f(x) = 10x^4 - 3x^3 - 29x^2 + 5x + 12$

P4. Use the Fundamental Theorem of Algebra to state the number of solutions and find the rational zeros of: Find all zeros of $f(x) = 15x^4 - 68x^3 - 7x^2 + 24x - 4$

A polynomial function is a function of the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Where $a_n \neq 0$, the exponents are all whole numbers and the coefficients are all real numbers. a_n is the **leading coefficient**, a_0 is the **constant term**, and n is the **degree**. A polynomial function is in **standard form** if its terms are written in descending order of exponents from left to right.

Degree	Туре
0	Constant
1	Linear
2	Quadratic
3	Cubic
4	Quartic

The end behavior of a polynomial function's graph is the behavior of the graph as x approaches positive infinity $(+\infty)$ or negative infinity $(-\infty)$. The expression $x \to +\infty$ is read as "x approaches positive infinity."

End behavior of a polynomial function's graph is determined by the function's degree and leading coefficient.

E1. Decide whether the function is a polynomial function. If it is, write the function in standard form and state its degree, type, and leading coefficient.

a.
$$f(x) = \frac{1}{2}x^2 - 3x^4 - 7$$

b.
$$f(x) = x^3 + 3^x$$

c.
$$f(x) = 6x^2 + 2x^{-1} + x$$

d.
$$f(x) = -0.5x + \pi x^2 - \sqrt{2}$$

P1. Decide whether the function is a polynomial function. If it is, write the function in standard form and state its degree, type, and leading coefficient.

a.
$$f(x) = 2x^2 - x^{-2}$$

b.
$$f(x) = -0.8x^3 + x^4 - 5$$

E2. Use synthetic substitution to evaluate $f(x) = 2x^4 - 8x^2 + 5x - 7$ when x = 3.

P2. Use synthetic substitution to evaluate $f(x) = 3x^5 - x^4 - 5x + 10$ when x = -2.

E3. Graph the function $f(x) = \frac{1}{4}(x+2)(x-1)^2$

P3. Graph the function $f(x) = -2(x^2 - 9)(x + 4)$

E4. Graph: $f(x) = -x^4 - 2x^3 + 2x^2 + 4x$.

P4. Graph: $f(x) = x^3 + 2x^2 - x + 3$

Piecewise functions are represented by a combination of equations, each corresponding part to a domain.

$$f(x) = \begin{cases} 2x - 1, & \text{if } x \le 1 \\ 3x + 1, & \text{if } x > 1 \end{cases}$$

This function is defined by two equations. One equation gives the values of f(x) when x is less than or equal to 1, and the other equation gives the values of f(x) when x is greater than 1.

- E1. Evaluate the piecewise function
- $f(x) = \begin{cases} x^2 1, & \text{if } x < 0 \\ \sqrt{x}, & \text{if } x \ge 0 \end{cases}$

(a). When x = -1

(b). When x = 0

(c). When x = 16

- P1. Evaluate the piecewise function
- $f(x) = \begin{cases} 3x + 2, & \text{if } x \le 3 \\ x 1, & \text{if } x > 3 \end{cases}$

(a). When x = 0

(b). When x = 3

(c). When x = 6

- E2. Graph this function:
- $f(x) = \begin{cases} \frac{2}{3}x + 2, & \text{if } x > 2 \\ -x + 1, & \text{if } x \le 2 \end{cases}$

P2. Graph this function:

$$f(x) = \begin{cases} \frac{1}{2}x + 1, & \text{if } x < 1 \\ -x + 3, & \text{if } x \ge 2 \end{cases}$$

$$f(x) = \begin{cases} 3 - 2x, & \text{if } x \le 1\\ (x - 2)^2, & \text{if } 1 < x < 4\\ 1, & \text{if } 5 \le x \le 6 \end{cases}$$

P3. Graph this function:
$$f(x) = \begin{cases} -x^2 + 4, & if -2 \le x < 1 \\ 3, & if \ 1 \le x < 3 \\ -\frac{3}{2}(x-5), if \ 3 \le x \le 5 \end{cases}$$

E4. Write equations for the piecewise function whose graph is shown:

To the left of x = 1, the graph is part of the line passing through $(_,_)$ and $(_,_)$. An equation for this line is $y = _$. To the right of and including x = 1, the graph is part of the line passing through $(_,_)$ and $(_,_)$. An equation for this line is $y = _$. A piecewise function for the graph is

-1,0)

$$f(x) =$$

The function $f(x) = \underline{\hspace{1cm}}$ does not apply to x = 1 because there is an open circle at $(1, \underline{\hspace{1cm}})$, but $f(x) = \underline{\hspace{1cm}}$ does apply to x = 1 because there is a solid circle at $(1, \underline{\hspace{1cm}})$.

P4. Write equations for the piecewise function whose graph is shown:

(1, 2)

1(1,0)

(3, 2)

E5. Write equations for the piecewise function whose graph is shown:

Warm-ups

Use the provided spaces to complete any warm-up problem or activity				
Date:	Date:			

Warm-ups

Use the provided spaces to complete any warm-up problem or activity			
Date:	Date:		
D. L.			
Date:	Date:		
Date:	Date:		
Date:	Date:		
Date:	Date:		